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Abstract In this paper, a central discontinuous Galerkin method is proposed to solve for
the viscosity solutions of Hamilton-Jacobi equations. Central discontinuous Galerkin meth-
ods were originally introduced for hyperbolic conservation laws. They combine the central
scheme and the discontinuous Galerkin method and therefore carry many features of both
methods. Since Hamilton-Jacobi equations in general are not in the divergence form, it is not
straightforward to design a discontinuous Galerkin method to directly solve such equations.
By recognizing and following a “weighted-residual” or “stabilization-based” formulation of
central discontinuous Galerkin methods when applied to hyperbolic conservation laws, we
design a high order numerical method for Hamilton-Jacobi equations. The L2 stability and
the error estimate are established for the proposed method when the Hamiltonians are lin-
ear. The overall performance of the method in approximating the viscosity solutions of gen-
eral Hamilton-Jacobi equations are demonstrated through extensive numerical experiments,
which involve linear, nonlinear, smooth, nonsmooth, convex, or nonconvex Hamiltonians.
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1 Introduction

Hamilton-Jacobi (H-J) equation

∂tϕ(x, t) + H(x, ϕ(x, t),∇xϕ(x, t)) = 0, x ∈ � ⊂ R
d (1.1)

with suitable initial and boundary conditions arises in various applications, such as opti-
mal control, differential games, seismic waves, crystal growth, robotic navigation, image
processing and calculus of variations. The solution of such equation may develop discontin-
uous derivatives in finite time even when the initial data is smooth, indicating the classical
solutions may not always exist. To ensure the existence of the solution as well as to single
out the physically relevant solution, the concept of viscosity solutions was established for
H-J equations. Such development is due to Crandall, Evans and Lions among many others,
see e.g. [15, 17]. Throughout the paper, the Hamiltonian H(x, q,p) in (1.1) is called linear
(resp. nonlinear, smooth, nonsmooth, convex, nonconvex) when it is linear (resp. nonlinear,
smooth, nonsmooth, convex, nonconvex) with respect to p.

Since the early work by Crandall and Lions [16] and Souganidis [38], there have been
many numerical methods developed to solve for the viscosity solution of (1.1). Because of
the focus of this paper, some of these methods with high order accuracy are listed here, such
as essentially nonoscillatory (ENO) schemes [33, 34], weighted ENO (WENO) and Her-
mite WENO schemes [21, 35, 40], central schemes [4, 23, 24], and discontinuous Galerkin
methods [6, 20, 27]. The primary goal of this paper is to design a high order numerical
method, namely, a central discontinuous Galerkin (DG) method, to solve H-J equations for
their viscosity solutions.

DG finite element methods were originally devised for conservation laws [7–9, 11,
12, 36] and later for many other applications, see, e.g. [1, 10, 13]. Compared with other
methods, DG methods have many attractive features such as being flexible with complicated
geometries, different boundary conditions, and various local approximations [14, 27, 39],
using compact stencils to achieve high order accuracy, and the easy parallel implementa-
tion. Till now there are mainly two DG methods available for solving H-J equations. Both
were formulated when the Hamiltonian H in (1.1) is in the form of H(x,∇xϕ(x, t)), that is,

∂tϕ(x, t) + H(x,∇xϕ(x, t)) = 0, x ∈ � ⊂ R
d (1.2)

and they can be extended to the general H-J equation (1.1). The first approach is based on
the elegant connection between the H-J equation and the conservation law system. Notice
by differentiating (1.2) with respect to x, one obtains a conservation system for the gradient
field w = ∇xϕ,

∂tw(x, t) + ∇xH(x,w(x, t)) = 0, x ∈ � ⊂ R
d . (1.3)

Different from the standard conservation system, the components of w are not independent.
By following the derivation of DG methods for conservation laws, in addition with a least
squares procedure in each time step (or each time stage depending on the particular time
discretization used) if (1.3) is multi-dimensional, a DG method was proposed in [20]. The
method first solves for w, then the missing constant in ϕ is recovered based on the original
equation (1.2). Later this method was reinterpreted and simplified by Li and Shu in [27],
with the use of locally curl-free approximations for w in a standard DG framework. This
is based on the intrinsic structure of w: curlxw = curlx∇xϕ = 0. The new equivalent formu-
lation in [27] avoids the use of the least squares procedure and involves fewer unknowns,
and therefore reduces the overall computational complexity for multi-dimensional cases.
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Moreover, it recasts the DG method for H-J equations in [20, 25] into the method of lines
framework, which is more natural for analysis and implementation.

The DG method reviewed above reliably captures the viscosity solutions of (1.2). In
terms of accuracy, it is optimal for ∇xϕ and in general suboptimal for ϕ itself with respect
to the approximation properties of discrete spaces. On the other hand, the method is based
on differential equations for ∇xϕ, and in multi-dimensional cases, a single equation (1.2) is
converted to a system of (1.3). In addition, the solutions of (1.2) are often smoother than
those of (1.3). This motivates the development of the second DG method in [6] to directly
solve (1.2). However it is not straightforward to design a direct method for H-J equations in
the DG framework. With one dimension as an example, notice (1.2) contains H(x, ∂xϕ) and
it is in general not in the divergence form. When (1.2) is multiplied by a test function and
integrated, integration by parts can not further shift the differential operator in space from ϕ

to the test function, a simple but commonly used step to define weak solutions and to design
DG methods for many applications.

On the other hand, the “weighted-residual” or “stabilization-based” formulations of DG
methods for linear PDEs are discussed in [2, 3], which reveal in many DG methods the bal-
ance of “how the numerical solution satisfies the PDE locally”, “how the continuity of cer-
tain qualities is imposed across element interfaces” and even “how the boundary condition
is satisfied”. The method proposed in [6] can be regarded as a DG method with such struc-
ture yet for equations which might be nonlinear. For linear Hamiltonians with discontinuous
coefficients or for nonlinear Hamiltonians, since the “weighted-residual” type method alone
in [6] is of Roe type, the scheme may generate entropy violating solutions. To ensure the
convergence to viscosity solutions, an additional entropy correction procedure was adopted.
The L2 stability and the optimal error estimate are established when the Hamiltonian is
linear with smooth coefficients. For nonlinear cases with convex Hamiltonians, numerical
experiments demonstrate the stability and the optimal accuracy of the overall scheme.

In this paper, we propose a high order numerical method, namely, a central DG method,
to directly solve for the viscosity solutions of H-J equations. Central DG methods were in-
troduced in [29–31] for hyperbolic conservation laws, and they combine the central scheme
[22, 28, 32] and the DG method. These methods evolve two copies of approximating solu-
tions defined on overlapping meshes, and they avoid the use of Riemann solvers which can
be complicated and costly for system of equations [26]. The co-existence of two numeri-
cal solutions also provides new opportunities, and one such example is the nonoscillatory
hierarchical reconstruction based on both solutions discussed in [30]. Besides, the methods
carry many features of standard DG methods.

What motivates the scheme in this paper is the observation that the central DG method,
when solving hyperbolic conservation laws [30], can be rewritten into a “weighted-residual”
or “stabilization-based” formulation [2, 3]. By following the structure of such formula-
tion, and with the similar treatment as in [6] to impose the continuity of the solution
across element interfaces, we introduce a central DG method for H-J equations (1.1). When
H(x, ϕ,∇xϕ) = c · ∇xϕ with c being a constant field, the H-J equation is also a conserva-
tion equation, and the proposed method is the same as the one in [30]. When the method
is applied to H-J equations with linear Hamiltonians, we establish the L2 stability and the
error estimate. This estimate is suboptimal with respect to the approximation properties of
discrete spaces, however, we always observe the optimal accuracy of the proposed method
for smooth solutions. In addition, a nonlinear limiting strategy is introduced in order to cap-
ture the viscosity solutions for some examples with nonconvex Hamiltonians, see Sect. 2.2
and Sect. 4. The overall performance of the proposed method in terms of high order accu-
racy and reliability, when approximating the viscosity solutions of general H-J equations,
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is demonstrated through a series of numerical experiments which involve linear, nonlinear,
smooth, nonsmooth, convex, or nonconvex Hamiltonians.

The rest of this paper is organized as follows. In Sect. 2, a central DG method is motivated
and formulated for H-J equations. Theoretical analysis in terms of the L2 stability and the
error estimate for linear Hamiltonian cases is carried out in Sect. 3. In Sect. 4, a collection of
one and two dimensional numerical examples are presented to demonstrate the performance
of the proposed method, which are followed by concluding remarks in Sect. 5.

2 Numerical Scheme

To motivate the scheme, we start with a brief review of the central DG method when applied
to a one dimensional scalar conservation equation

∂tϕ(x, t) + ∂xf (ϕ(x, t)) = 0, x ∈ (0, a). (2.1)

For simplicity, the periodic boundary condition is assumed. The method can also be
defined for multi-dimensional or system cases with general boundary conditions. Let {xi}i

be a partition of [0, a] with xi+ 1
2

= 1
2 (xi + xi+1), Ii = (xi− 1

2
, xi+ 1

2
) and Ii+ 1

2
= (xi, xi+1).

Two discrete spaces associated with overlapping meshes {xi}i and {xi+ 1
2
}i are defined

Vh = V k
h = {v : v|Ii ∈ P k(Ii),∀i}, Wh = Wk

h = {v : v|I
i+ 1

2

∈ P k(Ii+ 1
2
),∀i}

where P k(I ) is the set of polynomials with the degree at most k on I . We further denote
w(x±) = limε→0± w(x + ε), and the jump of w at xi , xi+ 1

2
as [w]i = w(x+

i ) − w(x−
i ),

[w]i+ 1
2

= w(x+
i+ 1

2
) − w(x−

i+ 1
2
) respectively.

To solve (2.1), the central DG method uses both spaces Vh and Wh and its semi-discrete
formulation is given as follows [30]: find ϕh(·, t) ∈ Vh and ψh(·, t) ∈ Wh, such that for any
η ∈ Vh, ξ ∈ Wh and for all i,

∫
Ii

∂tϕhηdx = 1

τmax

∫
Ii

(ψh − ϕh)ηdx +
∫

Ii

f (ψh)ηxdx

− f (ψh(xi+ 1
2
, t))η(x−

i+ 1
2
) + f (ψh(xi− 1

2
, t))η(x+

i− 1
2
), (2.2)

∫
I
i+ 1

2

∂tψhξdx = 1

τmax

∫
I
i+ 1

2

(ϕh − ψh)ξdx +
∫

I
i+ 1

2

f (ϕh)ξxdx

− f (ϕh(xi+1, t))ξ(x−
i+1) + f (ϕh(xi, t))ξ(x+

i ). (2.3)

Here τmax is the maximal time step allowed by the stability condition. It is more suitable to
write τmax = τmax(t), as in implementation τmax is often dynamically chosen and it is closely
related to the actual time step, see Sect. 4. One can refer to [28, 30] for the origin of τmax.
The key observation that motivates the proposed scheme is the following reformulation of
(2.2)–(2.3), after integration by parts with respect to x,

∫
Ii

(∂tϕh + ∂xf (ψh))ηdx = 1

τmax

∫
Ii

(ψh − ϕh)ηdx − [f (ψh)]iη(xi), (2.4)

∫
I
i+ 1

2

(∂tψh + ∂xf (ϕh))ξdx = 1

τmax

∫
I
i+ 1

2

(ϕh − ψh)ξdx − [f (ϕh)]i+ 1
2
ξ(xi+ 1

2
). (2.5)
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Notice that the first term in each of the above equations is a “generalized residual” in the
sense that if ϕh = ψh, this term measures how ϕh satisfies the PDE (2.1) locally. Equa-
tions (2.4) and (2.5) reflect a balance between such generalized residual, continuity of the
flux function f (·) at the element interfaces, and the difference of two approximating solu-
tions ϕh and ψh. DG methods with similar structures defined on one mesh, termed as DG
methods in the “weighted-residual” or “stabilization-based” formulations, are discussed in
[2, 3] for linear PDEs.

Based on the central DG method for hyperbolic conservation laws with the structure of
(2.4)–(2.5) as well as the direct DG method for solving H-J equations introduced by Cheng
and Shu [6], with the same notations as introduced above for meshes and discrete spaces Vh

and Wh, we propose the following central DG method for the one dimensional H-J equation
(1.1): look for ϕh(·, t) ∈ Vh and ψh(·, t) ∈ Wh, such that for any η ∈ Vh, ξ ∈ Wh and for all i,

∫
Ii

(∂tϕh + H(x,ψh, ∂xψh))ηdx

= 1

τmax

∫
Ii

(ψh − ϕh)ηdx − H1(x,ϕh, ∂xϕh)|x=xi
[ψh]iη(xi), (2.6)

∫
I
i+ 1

2

(∂tψh + H(x,ϕh, ∂xϕh))ξdx

= 1

τmax

∫
I
i+ 1

2

(ϕh − ψh)ξdx − H1(x,ψh, ∂xψh)|x=x
i+ 1

2

[ϕh]i+ 1
2
ξ(xi+ 1

2
), (2.7)

where H1(x, q,p) = ∂
∂p

H(x, q,p), the characteristic speed of (1.1) according to its charac-

teristic equations [18]. Though the treatment for the jumps of ϕh and ψh at element interfaces
is similar to the one in [6], the terms involving ϕh − ψh introduce additional stabilization
mechanism and therefore the proposed scheme is reliable to capture the viscosity solutions
without any additional entropy correction procedure, see Theorem 3.1 in Sect. 3 and numer-
ical examples in Sect. 4.

The method proposed above can also be defined for multi-dimensional H-J equations
with structured or unstructured meshes. For simplicity, we here consider a two dimensional
domain � = [0, a] × [0, b] with overlapping rectangular meshes. Let {xi}i and {yj }j be
partitions of [0, a] and [0, b] respectively, with xi+ 1

2
= 1

2 (xi + xi+1), Ii = (xi− 1
2
, xi+ 1

2
),

Ii+ 1
2

= (xi, xi+1), and yj+ 1
2

= 1
2 (yj + yj+1), Jj = (yj− 1

2
, yj+ 1

2
), Jj+ 1

2
= (yj , yj+1). Then

{Di,j }i,j and {Di+ 1
2 ,j+ 1

2
}i,j define two overlapping meshes for �, with Di,j = Ii × Jj and

Di+ 1
2 ,j+ 1

2
= Ii+ 1

2
× Jj+ 1

2
, see Fig. 1. Associated with these meshes, one can define two

discrete spaces:

Vh = V k
h = {v : v|Di,j

∈ P k(Di,j ),∀i, j},
Wh = Wk

h = {v : v|D
i+ 1

2 ,j+ 1
2

∈ P k(Di+ 1
2 ,j+ 1

2
),∀i, j}.

Here P k(D) is the set of polynomials with the total degree at most k on D.
Similar to one dimensional cases, a central DG method for two dimensional H-J equa-

tions (1.1) is defined as follows: look for ϕh(·, t) ∈ Vh and ψh(·, t) ∈ Wh, such that for any
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Fig. 1 Two dimensional
overlapping meshes

η ∈ Vh, ξ ∈ Wh and for all i and j ,

∫
Di,j

(∂tϕh + H(x,ψh,∇xψh))ηdx

= 1

τmax

∫
Di,j

(ψh − ϕh)ηdx

−
∫

Jj

H1(x, ϕh,∇xϕh)|x=xi
[ψh(·, y)]iη(xi, y)dy

−
∫

Ii

H2(x, ϕh,∇xϕh)|y=yj
[ψh(x, ·)]j η(x, yj )dx,

∫
D

i+ 1
2 ,j+ 1

2

(∂tψh + H(x, ϕh,∇xϕh))ξdx

= 1

τmax

∫
D

i+ 1
2 ,j+ 1

2

(ϕh − ψh)ξdx

−
∫

J
j+ 1

2

H1(x,ψh,∇xψh)|x=x
i+ 1

2

[ϕh(·, y)]i+ 1
2
ξ(xi+ 1

2
, y)dy

−
∫

I
i+ 1

2

H2(x,ψh,∇xψh)|y=y
j+ 1

2

[ϕh(x, ·)]j+ 1
2
ξ(x, yj+ 1

2
)dx.

Here (H1(x, q,p),H2(x, q,p)) = ∇pH(x,q,p), which is related to the characteristic speed
of H-J equations [18], and τmax is the maximal time step allowed by the stability condition
[28, 30].
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Remark 2.1 When H(x, ϕ,∇xϕ) = c · ∇xϕ with c being a constant field, the H-J equation is
also a conservation equation, and the proposed method is the same as the one in [30]. When
(1.1) is nonlinear, the proposed scheme is consistent only when k ≥ 1. Take one dimensional
Burgers’ equation as an example, that is, H(x,ϕ, ∂xϕ) = 1

2 (∂xϕ)2 and H1(x,ϕ, ∂xϕ) = ∂xϕ.
When k = 0, ∂xϕh|Ii = ∂xψh|I

i+ 1
2

= 0,∀ i, all terms containing H(x,q,p) and H1(x, q,p)

in (2.6)–(2.7) vanish, and this implies that the scheme is inconsistent to the Burgers’ equa-
tion. Such inconsistency can be avoided by reconstructing the numerical derivative for a
piecewise constant function, and such remedy is not pursued in this paper.

2.1 Numerical Boundary Condition

When the boundary condition is not periodic, the proposed scheme needs to be modified for
the boundary elements. Without loss of generality, we consider the one dimensional com-
putational domain (0, a) and assume x1 = 0 and xN = a. To impose the boundary condition
numerically, at x = 0, (2.6) with i = 1 will be replaced by

∫ x3/2

x1

(∂tϕh + H(x,ψh, ∂xψh))ηdx

= 1

τmax

∫ x3/2

x1

(ψh − ϕh)ηdx

− H1(x,ϕh, ∂xϕh)|x=x1(ψh(x1, t) − gL(t))η(x1)

for the inflow boundary condition φ(0, t) = gL(t), and by

∫ x3/2

x1

(∂tϕh + H(x,ψh, ∂xψh))ηdx = 1

τmax

∫ x3/2

x1

(ψh − ϕh)ηdx

for the outflow boundary condition. At x = a, (2.6) with i = N will be replaced by

∫ xN

x
N− 1

2

(∂tϕh + H(x,ψh, ∂xψh))ηdx

= 1

τmax

∫ xN

x
N− 1

2

(ψh − ϕh)ηdx

− H1(x,ϕh, ∂xϕh)|x=xN
(gR(t) − ψh(xN, t))η(xN)

for the inflow boundary condition φ(a, t) = gR(t), and by

∫ xN

x
N− 1

2

(∂tϕh + H(x,ψh, ∂xψh))ηdx = 1

τmax

∫ xN

x
N− 1

2

(ψh − ϕh)ηdx

for the outflow boundary condition. The boundary condition being inflow or outflow
is either given along with the equation, or can be numerically determined as follows:
H1(x,ϕh, ∂xϕh)|x=0 > 0 (resp. ≤ 0) implies an inflow (resp. outflow) boundary condition
at x = 0, and H1(x,ϕh, ∂xϕh)|x=a < 0 (resp. ≥ 0) implies an inflow (resp. outflow) bound-
ary condition at x = a.
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2.2 Nonlinear Limiter

It is demonstrated that for some examples with nonconvex Hamiltonians, nonlinear lim-
iters are needed in order for the proposed scheme to capture the viscosity solution. Based
on numerical experiments, the following limiting strategy is introduced for P 1 and P 2 ap-
proximations: consider three neighboring cells {C1,C2,C3}, which could be {Ii, Ii+ 1

2
, Ii+1}

or {Ii− 1
2
, Ii , Ii+ 1

2
} for some i. On Ci (i = 1,2,3), the numerical solution is represented as

Ui(x) = a0,i + a1,iξi for P 1 approximations, and Ui(x) = a0,i + a1,iξj + a2,i
3ξ2

i
−1

2 for P 2

approximations. Here ξi = x−ci

|Ci |/2 with ci being the cell center, and a0,i is the cell average of

Ui(x) on Ci . Note the basis functions 1, x, 3x2−1
2 are the first three Legendre polynomials on

[−1,1]. To apply the limiting procedure on C2,

• we first compute two candidates for the “slope” of U2(x) in C2 based on cell averages,

s1 = a0,3 − a0,2, s2 = a0,2 − a0,1;

• let ã1,2 = minmod(a1,2, s1, s2). If a1,2 = ã1,2, no change is needed for U2(x). Otherwise
we replace U2(x) by

Ũ2(x) = a0,2 + ã1,2ξ2,

here

minmod(d1, d2, d3) =

⎧⎪⎨
⎪⎩

min{d1, d2, d3} if d1, d2, d3 > 0,

max{d1, d2, d3} if d1, d2, d3 < 0,

0 otherwise.

In the actual implementation, “a1,2 = ã1,2” can be replaced by |a1,2 − ã1,2| ≤ ε. For instance
in Sect. 4, ε = 10−7 is used for Examples 4.7 and 4.8. This limiting strategy can be regarded
as the minmod slope limiter in [9] yet based on two numerical solutions on overlapping
meshes. For the P 1 case, it is the same as the nonoscillatory hierarchical reconstruction
procedure proposed in [30].

2.3 Time Discretization

Up to now we only have the semi-discrete central DG method, resulting the method of lines
ODE system

�t = L(�, t), (2.8)

where the dependence of L(·, ·) on t comes from the numerical boundary condition. This
ODE system can be further discretized by total variation diminishing (TVD) Runge-Kutta
methods [19, 37]. In Sect. 4, the following second and third order Runge-Kutta methods
are used when k = 1, 2 in V k

h (also in Wk
h ) respectively. �n (resp. �n+1) is the numerical

solution of (2.8) at tn (resp. tn+1), and �tn = tn+1 − tn.
RK2:

�(1) = �n + �tnL(�n, tn),

�n+1 = 1

2
�n + 1

2
�(1) + 1

2
�tnL(�(1), tn+1).
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RK3:

�(1) = �n + �tnL(�n, tn),

�(2) = 3

4
�n + 1

4
�(1) + 1

4
�tnL(�(1), tn+1),

�n+1 = 1

3
�n + 2

3
�(2) + 2

3
�tnL

(
�(2), tn + 1

2
�tn

)
.

3 Theoretical Results

In this section, the L2 stability and the error estimate will be established for the scheme
proposed in Sect. 2 when the Hamiltonian H in (1.1) is linear. The analysis is closely related
to those in [6, 31]. Though only the results for one dimensional cases are presented, similar
results can be obtained for multi-dimensional cases.

3.1 L2 Stability

Theorem 3.1 Consider the one dimensional H-J equation (1.1) with H(x,ϕ, ∂xϕ) =
c(x)∂xϕ and with the periodic boundary condition on (0, a). Let ϕh ∈ Vh and ψh ∈ Wh

be two numerical solutions of the semi-discrete central DG method (2.6)–(2.7), and assume
β = ‖cx‖∞ < ∞. Then the following L2 stability holds

E(T ) +
∫ T

0

1

τmax
�(t)e−β(t−T )dt ≤ E(0)eβT , (3.1)

where

E(t) = 1

2

∫ a

0
ϕ2

h(x, t) + ψ2
h(x, t)dx,

�(t) =
∫ a

0
(ϕh(x, t) − ψh(x, t))2dx.

(3.2)

In particular, when c(x) is a constant, then

E(T ) +
∫ T

0

1

τmax
�(t)dt = E(0). (3.3)

Proof By taking H(x,q,p) = c(x)p in the scheme of (2.6)–(2.7), one gets
∫

Ii

∂tϕhηdx = −
∫

Ii

c(x)∂xψhηdx

+ 1

τmax

∫
Ii

(ψh − ϕh)ηdx − c(xi)[ψh]iη(xi), (3.4)

∫
I
i+ 1

2

∂tψhξdx = −
∫

I
i+ 1

2

c(x)∂xϕhξdx

+ 1

τmax

∫
I
i+ 1

2

(ϕh − ψh)ξdx − c(xi+ 1
2
)[ϕh]i+ 1

2
ξ(xi+ 1

2
). (3.5)
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Let η = ϕh in (3.4) and ξ = ψh in (3.5), and sum up (3.4)–(3.5) over i, we get

1

2

d

dt

∫ a

0
ϕ2

h + ψ2
hdx

= 1

τmax

∫ a

0
(ψhϕh − ϕ2

h + ϕhψh − ψ2
h)dx

−
∑

i

(∫
Ii

c(x)∂xψhϕhdx +
∫

I
i+ 1

2

c(x)∂xϕhψhdx

+ c(xi)[ψh]iϕh(xi) + c(xi+ 1
2
)[ϕh]i+ 1

2
ψh(xi+ 1

2
)

)

= − 1

τmax

∫ a

0
(ϕh − ψh)

2dx

+
∑

i

(∫ xi

x
i− 1

2

cx(x)ψhϕhdx +
∫ x

i+ 1
2

xi

cx(x)ψhϕhdx

)

−
∑

i

(
c(x)ϕhψh

∣∣xi

x
i− 1

2

+ c(x)ψhϕh

∣∣xi+ 1
2

xi

+ c(xi)[ψh]iϕh(xi) + c(xi+ 1
2
)[ϕh]i+ 1

2
ψh(xi+ 1

2
)
)

= − 1

τmax

∫ a

0
(ϕh − ψh)

2dx +
∫ a

0
cx(x)ϕhψhdx

−
∑

i

(
c(xi)ϕh(xi)ψh(x

−
i ) − c(xi− 1

2
)ψh(xi− 1

2
)ϕh(x

+
i− 1

2
) + c(xi+ 1

2
)ψh(xi+ 1

2
)ϕh(x

−
i+ 1

2
)

− c(xi)ϕh(xi)ψh(x
+
i ) + c(xi)[ψh]iϕh(xi) + c(xi+ 1

2
)[ϕh]i+ 1

2
ψh(xi+ 1

2
)
)

= − 1

τmax

∫ a

0
(ϕh − ψh)

2dx +
∫ a

0
cx(x)ϕhψhdx.

Now with E(t) and �(t) defined as (3.2), one gets

d

dt
E(t) + 1

τmax
�(t) =

∫ a

0
cx(x)ϕhψhdx. (3.6)

If c(x) is a constant, (3.6) becomes

d

dt
E(t) + 1

τmax
�(t) = 0,

and integrating in time from 0 to T leads to (3.3).
For more general c(x) with β = ‖cx‖∞ < ∞, (3.6) becomes

d

dt
E(t) + 1

τmax
�(t) ≤ βE(t),

therefore

d

dt
E(t) − βE(t) ≤ − 1

τmax
�(t). (3.7)
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Multiplying e−βt to both sides of (3.7) and integrating in time from 0 to T , one gets (3.1). �

As pointed out in [31], Theorem 3.1 indicates that the energy dissipation of the proposed
scheme is closely related to

∫ a

0 (ϕh(x, t) − ψh(x, t))2dx, the L2 difference of two numerical
solutions ϕh and ψh. This is different from the standard DG method which evolves one nu-
merical solution, and the energy dissipation is related to the jumps of the numerical solution
at element interfaces.

3.2 Error Estimate

Theorem 3.2 Consider the one dimensional H-J equation (1.1) with H(x,ϕ, ∂xϕ) = c∂xϕ

and with the periodic boundary condition on � = (0, a). Let ϕ denote the exact solution
with the initial condition ϕ(x,0) = ϕ0(x) ∈ Hk+1(�), and ϕh ∈ Vh = V k

h , ψh ∈ Wh = Wk
h

be two numerical solutions of the semi-discrete central DG method (2.6)–(2.7). Then the
following L2 error estimate holds

‖ϕ − ϕh‖L2(�) + ‖ϕ − ψh‖L2(�) ≤ Chk. (3.8)

Here the constant C depends on ‖ϕ0‖Hk+1(�) and the final time T .

Based on Remark 2.1, the proposed scheme is exactly the same as the one in [30] when
applied to the linear H-J equation with constant coefficient, which is also the linear scalar
conservation law equation. And the result (3.8) was established by Theorem 2.2 in [31].
Notice that with respect to the approximation properties of discrete spaces V k

h and Wk
h ,

the error estimate (3.8) is suboptimal. In numerical examples however we always observe
optimal convergence rates for smooth examples.

4 Numerical Examples

In this section we report a sequence of one and two dimensional numerical examples to
illustrate the high order accuracy and reliability of the proposed method when approximating
the viscosity solutions of H-J equations (1.1). When discretizing (2.6)–(2.7) (or the two
dimensional scheme) from time tn to tn+1 = tn + �tn, τmax in the scheme and the time step
�tn are computed by

τmax = dtn, �tn = θ dtn,

with θ ∈ (0,1] as a parameter, and dtn is dynamically determined by

dtn = CCFLhx

λx,n

(4.1)

in one dimensional cases and by

dtn = CCFL

/(
λx,n

hx

+ λy,n

hy

)
(4.2)

in two dimensional cases. Here λx,n = ‖H1‖∞ and λy,n = ‖H2‖∞ at t = tn, and they are
computed numerically. hx = mini (min(Ii , Ii+ 1

2
)) and hy = minj (min(Jj , Jj+ 1

2
)). In the nu-

merical experiments reported below, θ = 1 is taken. Unless specified otherwise, the second
order Runge-Kutta method is used for P 1 approximations with CCFL = 0.45, and the third
order Runge-Kutta method is used for P 2 approximations with CCFL = 0.33 [31].
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Table 1 Errors and convergence
orders for Example 4.1 on a
uniform mesh of N cells, t = 1

N L2 error Order L1 error Order

P 0

10 3.57e–01 – 7.77e–01 –

20 1.72e–01 1.05 3.62e–01 1.10

40 8.35e–02 1.04 1.70e–01 1.09

80 4.13e–02 1.02 8.22e–02 1.05

160 2.05e–02 1.01 4.04e–02 1.02

P 1

10 4.33e–02 – 8.72e–02 –

20 1.05e–02 2.05 2.12e–02 2.04

40 2.55e–03 2.04 5.18e–03 2.04

80 6.09e–04 2.06 1.24e–03 2.06

160 1.63e–04 1.91 3.29e–04 1.92

P 2

10 1.68e–03 – 3.33e–03 –

20 2.17e–04 2.96 4.03e–04 3.05

40 2.58e–05 3.07 4.81e–05 3.07

80 3.40e–06 2.92 6.10e–06 2.98

160 4.17e–07 3.03 7.49e–07 3.02

4.1 One Dimensional Examples

Example 4.1 We consider the linear advection equation

{
ϕt + ϕx = 0, x ∈ (0,2π)

ϕ(x,0) = sin(x)

with the smooth initial data and the periodic boundary condition.

For this smooth example, numerical errors and convergence orders are reported in Ta-
ble 1 for P 0, P 1 and P 2 cases. Even though the error estimate in Sect. 3 shows that the
accuracy is suboptimal, we observe optimal (k + 1)-st order of convergence rate when V k

h

and Wk
h are used. Recall that the proposed scheme is inconsistent when (1.1) is nonlinear

(see Remark 2.1), and this is the only example of which numerical results are reported in
this paper when k = 0.

Example 4.2 We consider the linear advection equation

{
ϕt + ϕx = 0, x ∈ (−1,1)

ϕ(x,0) = ϕ0(x)
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Fig. 2 Example 4.2. t = 2 (left), t = 8 (right), N = 100, using P 1 polynomials

Fig. 3 Example 4.2. t = 2 (left), t = 8 (right), N = 100, using P 2 polynomials

with the periodic boundary condition and the nonsmooth initial data

ϕ0(x) = −
(√

3

2
+ 9

2
+ 2π

3

)
(x + 1) +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 cos( 3πx2

2 ) − √
3, −1 ≤ x < − 1

3
3
2 + 3 cos(2πx), − 1

3 ≤ x < 0
15
2 − 3 cos(2πx), 0 ≤ x < 1

3
28+4π+cos(3πx)

3 + 6πx(x − 1), 1
3 ≤ x < 1

This example is used to illustrate the dissipative properties of the proposed method. Fig-
ure 2 (resp. Fig. 3) includes the exact solution as well as the P 1 (resp. P 2) numerical so-
lutions after one time period (left) and after four time periods (right), and the features of
the solution are well captured by the method. In addition, one can see that the scheme has
smaller numerical dissipation when using higher degrees of polynomials as approximations.
This is generally the case when lower order methods are compared with higher order meth-
ods.

Example 4.3 We consider the following linear equation
{

ϕt + sign(cos(x))ϕx = 0, x ∈ (0,2π)

ϕ(x,0) = sin(x)

with the nonsmooth coefficient and the periodic boundary condition. The exact solution is
piecewise smooth and its formula can be found in [6].
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Table 2 Errors and convergence
orders for Example 4.3 on a
uniform mesh of N cells,
computed in the subregion
(0,2π)\[1.5,1.64], t = 1

N L2 error Order L1 error Order

P 1

10 1.02e–01 – 1.82e–01 –

20 3.80e–02 1.42 6.59e–02 1.47

40 1.18e–02 1.69 1.95e–02 1.76

80 3.42e–03 1.78 5.22e–03 1.90

160 7.47e–04 2.19 1.25e–03 2.06

P 2

10 3.77e–02 – 5.82e–02 –

20 9.62e–03 1.97 1.35e–02 2.10

40 2.44e–03 1.98 3.41e–03 1.99

80 9.34e–04 1.38 9.52e–04 1.84

160 1.40e–04 2.74 2.01e–04 2.25

Fig. 4 Example 4.3. t = 1,
N = 100, using P 2 polynomials

The numerical solution at t = 1 is plotted in Fig. 4, and it approximates well the exact
solution, which contains a shock in ϕx at x = π

2 and a rarefaction wave around x = 3π
2 .

Errors and convergence orders in Table 2 are computed in (0,2π)\[1.5,1.64] where the
exact solution is H 2. The order of accuracy in this subregion is expected to be min(2, k +1).
We want to mention that the direct DG method introduced in [6] needs an entropy correction
procedure in order to capture the viscosity solution for this example.

Example 4.4 We consider the Burgers’ equation

{
ϕt + 1

2 (ϕx)
2 = 0, x ∈ (0,2π)

ϕ(x,0) = − cos(x)

with the periodic boundary condition and the smooth initial data. The Hamiltonian is non-
linear and convex.
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Table 3 Errors and convergence
orders for Example 4.4 on a
uniform mesh of N cells, t = 0.5

N L2 error Order L1 error Order

P 1

10 2.87e–02 – 4.97e–02 –

20 7.67e–03 1.91 1.35e–02 1.88

40 2.04e–03 1.91 3.61e–03 1.90

80 4.84e–04 2.08 8.56e–04 2.08

160 1.16e–04 2.06 2.05e–04 2.06

P 2

10 2.26e–03 – 3.09e–03 –

20 3.00e–04 2.91 4.07e–04 2.93

40 4.12e–05 2.86 5.56e–05 2.87

80 5.04e–06 3.03 6.72e–06 3.05

160 6.53e–07 2.95 8.51e–07 2.98

Fig. 5 Example 4.4. t = 1,
N = 100, using P 2 polynomials

At t = 0.5, the exact solution is smooth, and the optimal order of accuracy of the pro-
posed scheme is observed for both P 1 and P 2 approximations in Table 3. Later a shock is
formed in ϕx , and it is approximated sharply by the scheme, see Fig. 5 for the solution at
t = 1. In Table 4, errors and convergence orders at t = 1 are reported, and they are computed
in (0,2π)\[3.0,3.28]. The solution in this region is smooth and the numerical results again
show optimal accuracy.

Example 4.5 We consider the Eikonal equation

{
ϕt + |ϕx | = 0, x ∈ (0,2π)

ϕ(x,0) = sin(x)

with the periodic boundary condition and the smooth initial data. The Hamiltonian is
nonsmooth and convex. This example has the same exact solution as Example 4.3. Nu-
merical errors and convergence orders are reported in Table 5, which are computed in
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Table 4 Errors and convergence
orders for Example 4.4 on a
uniform mesh of N cells,
computed in the subregion
(0,2π)\[3.0,3.28], t = 1

N L2 error Order L1 error Order

P 1

10 2.88e–02 – 5.18e–02 –

20 8.67e–03 1.73 1.37e–02 1.92

40 2.71e–03 1.68 3.70e–03 1.89

80 4.14e–04 2.71 7.64e–04 2.28

160 1.03e–04 2.00 1.91e–04 2.00

P 2

10 3.57e–03 – 3.03e–03 –

20 1.06e–03 1.75 7.01e–04 2.11

40 3.53e–04 1.59 1.84e–04 1.93

80 1.79e–05 4.31 8.57e–06 4.43

160 8.00e–07 4.48 6.08e–07 3.82

Table 5 Errors and convergence
orders for Example 4.5 on a
uniform mesh of N cells,
computed in the subregion
(0,2π)\[1.5,1.64], t = 1

N L2 error Order L1 error Order

P 1

10 1.14e–01 – 2.13e–01 –

20 2.51e–02 2.18 4.14e–02 2.36

40 8.76e–03 1.52 1.34e–02 1.63

80 2.77e–03 1.66 3.82e–03 1.81

160 6.57e–04 2.07 1.03e–03 1.89

P 2

10 3.78e–02 – 6.44e–02 –

20 1.09e–02 1.79 1.65e–02 1.97

40 3.19e–03 1.77 4.70e–03 1.81

80 1.17e–03 1.44 1.46e–03 1.69

160 2.68e–04 2.13 3.87e–04 1.92

(0,2π)\[1.5,1.64] where the exact solution is H 2. The order of accuracy in this subre-
gion is expected to be min(2, k + 1). Unlike in [6], the entropy correction procedure is not
needed for the proposed method to capture the viscosity solution.

Example 4.6 The following example

{
ϕt − cos(ϕx + 1) = 0, x ∈ (−1,1)

ϕ(x,0) = − cos(πx)

involves a nonconvex Hamiltonian with the smooth initial data. The boundary condition is
periodic.

At t = 0.5/π2, the exact solution is smooth, and numerical results are presented in Ta-
ble 6, demonstrating the optimal order of accuracy of the proposed method. By the time
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Table 6 Errors and convergence
orders for Example 4.6 on a
uniform mesh of N cells,
t = 0.5/π2

N L2 error Order L1 error Order

P 1

10 2.10e–02 – 2.17e–02 –

20 4.63e–03 2.18 4.80e–03 2.17

40 1.14e–03 2.02 1.15e–03 2.06

80 2.76e–04 2.05 2.77e–04 2.05

160 6.91e–05 2.00 6.93e–05 2.00

P 2

10 1.38e–03 – 1.55e–03 –

20 2.40e–04 2.53 2.22e–04 2.81

40 2.71e–05 3.14 2.35e–05 3.24

80 3.36e–06 3.01 2.86e–06 3.04

160 4.15e–07 3.02 3.45e–07 3.05

Fig. 6 Example 4.6. t = 1.5/π2,
N = 100, using P 2 polynomials

t = 1.5/π2, nonsmooth features have developed in ϕ, and they are reliably captured, see
Fig. 6.

Example 4.7 We consider the Riemann problem with a nonconvex Hamiltonian

{
ϕt + 1

4 (ϕ2
x − 1)(ϕ2

x − 4) = 0, x ∈ (−1,1)

ϕ(x,0) = −2|x|.

Similarly as observed in [20], a nonlinear limiter is needed in order for the proposed
scheme to capture the viscosity solution of this example. This can be seen from Fig. 7, which
contains the exact solution as well as the numerical solutions with (left) and without (right)
the limiting step. The limiter procedure used here is described in Sect. 2.2. Due to the low
regularity of the exact solution, both P 1 and P 2 approximations are of first order accuracy,
see Table 7. For P 2 case, CCFL = 0.2 is taken to determine the time step by (4.1). Note the
P 2 results have larger errors, and this can be explained by the nonlinear limiter adopted
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Table 7 Errors and convergence
orders for Example 4.7 on a
uniform mesh of N cells, t = 1.
The second order Runge-Kutta
method is used for P 1

approximations with
CCFL = 0.45, and the third order
Runge-Kutta method is used for
P 2 approximations with
CCFL = 0.2. The time step
�tn = θdtn is dynamically
determined by (4.1) with θ = 1

N L2 error Order L1 error Order

P 1

10 2.06e–01 – 2.61e–01 –

20 1.05e–01 0.97 1.14e–01 1.19

40 5.31e–02 0.98 5.67e–02 1.01

80 2.66e–02 0.99 2.78e–02 1.03

160 1.33e–02 1.00 1.38e–02 1.01

P 2

10 4.18e–01 – 5.33e-01 –

20 2.24e–01 0.90 2.57e-01 1.05

40 1.14e–01 0.98 1.24e-01 1.06

80 5.72e–02 0.99 6.06e-02 1.03

160 2.85e–02 1.00 2.98e-02 1.02

Table 8 Errors and convergence
orders for Example 4.7 on a
uniform mesh of N cells, t = 1.
The third order Runge-Kutta
method is used for both P 1 and
P 2 approximations, with the
fixed time step
�t = CCFLhx/λx , and
CCFL = 0.18, λx = 3.5,
hx = mini (min(Ii , Ii+ 1

2
))

N L2 error Order L1 error Order

P 1

10 3.74e–01 – 4.98e–01 –

20 1.84e–01 1.03 2.06e–01 1.27

40 9.31e–02 0.98 1.00e–01 1.04

80 4.67e–02 1.00 4.92e–02 1.03

160 2.33e–02 1.00 2.43e–02 1.02

P 2

10 3.77e–01 – 4.90e–01 –

20 1.87e–01 1.01 2.12e–01 1.21

40 9.48e–02 0.98 1.02e–01 1.05

80 4.75e–02 1.00 5.01e–02 1.03

160 2.37e–02 1.00 2.47e–02 1.02

in the computation. In fact, when this limiter is used in some element Ii , the P 2 numerical
solution in Ii will be replaced with a linear polynomial. On the other hand, it is observed that
in the P 2 simulation, the limiter was applied in the central region where the exact solution
is not linear. This implies that P 1 and P 2 approximations will have comparable spatial
errors for this example, and this is confirmed by the results in Table 8 when the same time
discretization, the third order Runge-Kutta method with the fixed time-step �t = CCFLhx/λx

as well as CCFL = 0.18 and λx = 3.5 (an upper bound for ‖H1‖∞ in the (x, t) domain), is
applied in P 1 and P 2 simulations. The computation is carried out with the outflow numerical
boundary condition (see Sect. 2.1). Other nonlinear limiters that were tested yet failed to
capture the viscosity solution for both P 1 and P 2 computations include the minmod slope
limiter in [9] and the nonoscillatory hierarchical reconstruction procedure in [30]. Further
investigation is needed to identify other robust limiting strategies for the proposed scheme
when Hamiltonians are nonconvex and when higher order polynomials are used.
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Fig. 7 Example 4.7. t = 1, N = 100, using P 2 polynomials with (left) and without limiting (right)

Example 4.8 We consider another nonconvex example

{
ϕt + H(ϕx) = 0, x ∈ (0,1)

ϕ(x,0) = ϕ0(x),

with the Hamiltonian

H(u) =
⎧⎨
⎩

1
4 u(1 − u), u ≤ 1

2

1
2 u(u − 1) + 3

16 , u > 1
2

and the initial condition

ϕ0(x) =
{

x − 1
4 , x ≤ 1

4

0, x > 1
4 .

The exact viscosity solution is composed (from left to right) of a linear part, a parabolic
part and a constant state, and the nonlinear limiter turns out to be necessary for capturing
this solution. This can be seen from Fig. 8, which contains the exact solution and the numer-
ical solution with the limiting step (left), and the zoomed-in plots of the exact solution and
numerical solutions with and without the limiting step (right). The limiter procedure used
here is described in Sect. 2.2. In the computation, the outflow numerical boundary condi-
tion is applied. Similar to Example 4.7, it is observed that the nonlinear limiter is used in
the parabolic section of the solution in all simulations, and therefore we here only report
the results (see Table 9) when both P 1 and P 2 computations are performed with the same
time discretization, that is, the third order Runge-Kutta method with the fixed time-step
�t = CCFLhx/λx as well as CCFL = 0.18 and λx = 0.5 (an estimate for ‖H1‖∞ in the (x, t)

domain). Note both P 1 and P 2 approximations are comparable and they are of first order
accuracy due to the low regularity of the exact solution. This example was also discussed in
[5] to illustrate the role of nonlinear limiters in capturing viscosity solutions.
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Table 9 Errors and convergence
orders for Example 4.8 on a
uniform mesh of N cells, t = 2.
The third order Runge-Kutta
method is used for both P 1 and
P 2 approximations, with the
fixed time step
�t = CCFLhx/λx , and
CCFL = 0.18, λx = 0.5,
hx = mini (min(Ii , Ii+ 1

2
))

N L2 error Order L1 error Order

P 1

10 2.15e–02 – 1.94e–02 –

20 5.73e–03 1.91 2.93e–03 2.72

40 2.84e–03 1.01 1.23e–03 1.25

80 1.40e–03 1.02 5.43e–04 1.18

160 6.87e–04 1.03 2.45e–04 1.15

P 2

10 1.57e–02 – 1.41e–02 –

20 5.72e–03 1.46 3.32e–03 2.09

40 2.81e–03 1.02 1.22e–03 1.45

80 1.39e–03 1.02 5.35e–04 1.18

160 6.79e–04 1.03 2.42e–04 1.14

Fig. 8 Example 4.8. t = 2, N = 100, using P 2 polynomials. The solution with limiting (left), zoomed in
comparison of solutions with and without limiting (right)

4.2 Two Dimensional Examples

Example 4.9 We consider the linear advection equation
{

ϕt + ϕx + ϕy = 0, (x, y) ∈ (−1,1)2

ϕ(x, y,0) = sin(π(x + y))

with the periodic boundary condition and the smooth initial data.
This can be regarded as a rotated one dimensional advection equation in two dimensional

space. Similarly as in one dimensional case, the numerical results reported in Table 10 show
the optimal convergence property of the proposed method for this smooth example.

Example 4.10 We consider the Burgers’ equation
{

ϕt + 1
2 (ϕx + ϕy)

2 = 0, (x, y) ∈ (0,2π)2

ϕ(x, y,0) = − cos(x + y)
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Table 10 Errors and
convergence orders for
Example 4.9 on a uniform mesh
of N × N cells, t = 1

N L2 error Order L1 error Order

P 1

10 5.23e–02 – 4.64e–02 –

20 1.55e–02 1.76 1.38e–02 1.75

40 4.05e–03 1.93 3.61e–03 1.93

80 1.02e–03 1.99 9.10e–04 1.99

160 2.56e–04 2.00 2.28e–04 2.00

P 2

10 3.41e–03 – 2.86e–03 –

20 4.28e–04 2.99 3.52e–04 3.02

40 5.14e–05 3.06 4.26e–05 3.05

80 6.53e–06 2.98 5.38e–06 2.98

160 8.52e–07 2.94 6.95e–07 2.95

Table 11 Errors and
convergence orders for
Example 4.10 on a uniform mesh
of N × N cells, t = 0.1, periodic
boundary condition

N L2 error Order L1 error Order

P 1

10 2.23e–02 – 1.32e–02 –

20 6.79e–03 1.72 4.19e–03 1.65

40 1.56e–03 2.12 9.40e–04 2.16

80 3.67e–04 2.08 2.19e–04 2.10

160 9.09e–05 2.01 5.40e–05 2.02

P 2

10 3.45e–03 – 2.11e–03 –

20 4.76e–04 2.86 3.01e–04 2.81

40 5.74e–05 3.05 3.44e–05 3.13

80 6.81e–06 3.07 3.91e–06 3.14

160 8.83e–07 2.95 5.08e–07 2.94

with the smooth initial data.
We first assume the boundary condition is periodic. At t = 0.1, the exact solution is

still smooth, and the proposed scheme demonstrates the optimal convergent behavior in
Table 11. Later at t = 0.5, nonsmooth features form in the solution which are reliably ap-
proximated, see Fig. 9. For the same exact solution, the computation is also carried out with
the non-periodic boundary condition based on Sect. 2.1. The results at t = 0.1 are reported
in Table 12, and they further confirm the optimal convergence property of the method.

Example 4.11 We consider the following nonlinear example

{
ϕt + ϕxϕy = 0, (x, y) ∈ (−π,π)2

ϕ(x, y,0) = sin(x) + cos(y)



J Sci Comput (2010) 45: 404–428 425

Table 12 Errors and
convergence orders for
Example 4.10 on a uniform mesh
of N × N cells, t = 0.1,
non-periodic boundary condition

N L2 error Order L1 error Order

P 1

10 2.24e–02 – 1.34e–02 –

20 6.82e–03 1.72 4.21e–03 1.67

40 1.57e–03 2.12 9.46e–04 2.15

80 3.70e–04 2.08 2.20e–04 2.11

160 9.16e–05 2.01 5.42e–05 2.02

P 2

10 3.46e–03 – 2.09e–03 –

20 4.79e–04 2.85 3.03e–04 2.79

40 5.80e–05 3.04 3.49e–05 3.12

80 6.96e–06 3.06 4.03e–06 3.12

160 9.21e–07 2.92 5.32e–07 2.92

Fig. 9 Example 4.10. t = 0.5,
N × N = 40 × 40, using P 2

polynomials

with the periodic boundary condition. Different from Examples 4.9 and 4.10, this example
is genuinely two dimensional. Figure 10 shows how the numerical solutions look like when
the exact solution is smooth (left, at t = 0.8), and when singular features form in the solu-
tion (right, at t = 1.5). Errors and convergence orders are presented in Table 13 at t = 0.8,
demonstrating the optimal convergence property of the proposed method.

Example 4.12 This example is related to controlling optimal cost determination, see [34]

{
ϕt + sin(y)ϕx + (sin(x) + sign(ϕy))ϕy − 1

2 sin2(y) + cos(x) − 1 = 0, (x, y) ∈ (−π,π)2

ϕ(x, y,0) = 0.

The boundary condition is periodic and the Hamiltonian is nonsmooth. The numerical so-
lution (left) and the optimal control ω = sign(ϕy) (right) at t = 1 are shown in Fig. 11. The
results are comparable to those by the DG methods in [20] and the WENO methods in [40].
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Table 13 Errors and
convergence orders for
Example 4.11 on a uniform mesh
of N × N cells, t = 0.8

N L2 error Order L1 error Order

P 1

10 2.61e–02 – 1.87e–02 –

20 6.86e–03 1.93 4.74e–03 1.98

40 1.72e–03 2.00 1.18e–03 2.00

80 4.22e–04 2.02 2.92e–04 2.02

160 1.05e–04 2.01 7.30e–05 2.00

P 2

10 3.92e–03 – 2.13e–03 –

20 4.46e–04 3.14 2.40e–04 3.15

40 6.30e–05 2.82 3.15e–05 2.93

80 7.99e–06 2.98 3.90e–06 3.01

160 9.96e–07 3.00 4.77e–07 3.03

Fig. 10 Example 4.11. t = 0.8 (left), t = 1.5 (right), N × N = 40 × 40, using P 2 polynomials

Fig. 11 Example 4.12. The numerical solution (left) and the optimal control sign(ϕy) (right). t = 1,
N × N = 40 × 40, using P 2 polynomials

5 Concluding Remarks

A central discontinuous Galerkin method is proposed in this paper to solve Hamilton-Jacobi
equations. The method is motivated by the “weighted-residual” or “stabilization-based” for-
mulation of central discontinuous Galerkin methods when applied to hyperbolic conserva-
tion laws [29–31]. The L2 stability and the error estimate are established for linear Hamil-
tonians. And the high order accuracy and reliability of the proposed method, when approxi-



J Sci Comput (2010) 45: 404–428 427

mating the viscosity solutions of more general Hamilton-Jacobi equations, are demonstrated
through a series of numerical experiments. More investigation is needed to identify other ro-
bust nonlinear limiting strategies particularly suitable for the proposed method to capture the
viscosity solutions when Hamiltonians are nonconvex and when higher order polynomials
are used. The suboptimal error estimate for linear cases can also be further improved.
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